Institute of Advanced Medical Sciences, Department of Molecular Oncology, Graduate Shool Professor

Updated on 2024/11/19
Ph.D.
マクロオートファジー
オートファジー
エクソソーム
液滴
液-液相分離
ミクロオートファジー
Nagoya University Graduate School of Science
2001.4 - 2004.3
Country: Japan
Nagoya University Graduate School of Science
1999.4 - 2001.3
Country: Japan
Nagoya University School of Science Department of Chemistry
1995.4 - 1999.3
Country: Japan
Nippon Medical School Department of Molecular Oncology, Institute for Advanced Medical Sciences Professor
2022.7
Country:Japan
ERATO 水島細胞内分解ダイナミクス 分子・進化グル-プ グループリーダー
2019.7 - 2024.3
Country:Japan
The University of Tokyo Department of Biochemistry and Molecular Biology, Graduate School of Medicine Lecturer
2015.9 - 2022.6
Country:Japan
Tokyo Institute of Technology
2011.8 - 2015.8
Country:Japan
Tokyo Institute of Technology
2009.4 - 2011.7
Country:Japan
National Institute for Basic Biology
2006.4 - 2009.3
Country:Japan
Nagoya University
2005.4 - 2006.3
Country:Japan
Nagoya University
2003.4 - 2005.3
Country:Japan
日本生化学会
日本分子生物学会
日本生物物理学会
酵母細胞研究会
日本細胞外小胞学会
日本生化学会 評議員
2022.9
Committee type:Academic society
Syntaxin 17 recruitment to mature autophagosomes is temporally regulated by PI4P accumulation Reviewed
Saori Shinoda, Yuji Sakai, Takahide Matsui, Masaaki Uematsu, Ikuko Koyama-Honda, Jun-ichi Sakamaki, Hayashi Yamamoto, Noboru Mizushima
eLife 12 2024.6
Quantitative control of subcellular protein localization with a photochromic dimerizer Reviewed
Takato Mashita, Toshiyuki Kowada, Hayashi Yamamoto, Satoshi Hamaguchi, Toshizo Sato, Toshitaka Matsui, Shin Mizukami
Nature Chemical Biology 2024.6
Molecular mechanisms of macroautophagy, microautophagy, and chaperone-mediated autophagy Reviewed
Hayashi Yamamoto*, Takahide Matsui
Journal of Nippon Medical School 2024.3
Takahiro Shimizu, Norito Tamura, Taki Nishimura, Chieko Saito, Hayashi Yamamoto, Noboru Mizushima
Human Molecular Genetics 2023.6
Autophagy genes in biology and disease Reviewed
Hayashi Yamamoto, Sidi Zhang, Noboru Mizushima
Nature Reviews Genetics 2023.1
Takato Mashita, Toshiyuki Kowada, Hayashi Yamamoto, Satoshi Hamaguchi, Toshitaka Matsui, Shin Mizukami
2022.11
NCOA4 drives ferritin phase separation to facilitate macroferritinophagy and microferritinophagy Reviewed
Tomoko Ohshima, Hayashi Yamamoto (co-first author), Yuriko Sakamaki, Chieko Saito, Noboru Mizushima
Journal of Cell Biology 2022.10
Jiawen Fu, Lin Zhao, Yu Pang, Heming Chen, Hayashi Yamamoto, Yuntong Chen, Zhaoran Li, Noboru Mizushima, Honglin Jia
Autophagy 2022.9
A HaloTag-based reporter processing assay to monitor autophagic flux
Willa Wen-You Yim, Hayashi Yamamoto (co-corresponding author)*, Noboru Mizushima*
Autophagy 2022.9
Ubiquitination of phosphatidylethanolamine in organellar membranes Reviewed
Jun-ichi Sakamaki, Koji L. Ode, Yoshitaka Kurikawa, Hiroki R. Ueda, Hayashi Yamamoto, Noboru Mizushima
Molecular Cell 2022.8
A pulse-chasable reporter processing assay for mammalian autophagic flux with HaloTag Reviewed
Willa Wen-You Yim, Hayashi Yamamoto (co-first author, co-corresponding author)*, Noboru Mizushima*
eLife 2022.8
Willa Wen‐You Yim, Hayashi Yamamoto, Noboru Mizushima
FEBS Letters 596 ( 8 ) 991 - 1003 2022.4
Evolutionary diversification of the autophagy-related ubiquitin-like conjugation systems Reviewed
Sidi Zhang, Euki Yazaki, Hirokazu Sakamoto, Hayashi Yamamoto, Noboru Mizushima
Autophagy 18 ( 12 ) 1 - 16 2022.4
Fumiya Okawa, Yutaro Hama, Sidi Zhang, Hideaki Morishita, Hayashi Yamamoto, Tim P. Levine, Noboru Mizushima
Journal of Cell Science 134 ( 8 ) 2021.4
Structure, lipid scrambling activity and role in autophagosome formation of ATG9A Reviewed
Shintaro Maeda, Hayashi Yamamoto, Lisa N. Kinch, Christina M. Garza, Satoru Takahashi, Chinatsu Otomo, Nick V. Grishin, Stefano Forli, Noboru Mizushima, Takanori Otomo
Nature Structural and Molecular Biology 27 ( 12 ) 1194 - 1201 2020.12
Evolution from covalent conjugation to non-covalent interaction in the ubiquitin-like ATG12 system Reviewed
Yu Pang, Hayashi Yamamoto (co-first author), Hirokazu Sakamoto, Masahide Oku, Joe Kimanthi Mutungi, Mayurbhai Himatbhai Sahani, Yoshitaka Kurikawa, Kiyoshi Kita, Nobuo N. Noda, Yasuyoshi Sakai, Honglin Jia, Noboru Mizushima
Nature Structural and Molecular Biology 26 ( 4 ) 289 - 296 2019.4
Two distinct mechanisms target the autophagy-related E3 complex to the pre-autophagosomal structure Reviewed
Kumi Harada, Tetsuya Kotani, Hiromi Kirisako, Machiko Sakoh-Nakatogawa, Yu Oikawa, Yayoi Kimura, Hisashi Hirano, Hayashi Yamamoto, Yoshinori Ohsumi, Hitoshi Nakatogawa
eLife 8 2019.2
YKT6 as a second SNARE protein of mammalian autophagosomes
Noboru Mizushima, Takahide Matsui, Hayashi Yamamoto
Autophagy 15 ( 1 ) 176 - 177 2019.1
Autophagosomal YKT6 is required for fusion with lysosomes independently of syntaxin 17 Reviewed
Takahide Matsui, Peidu Jiang, Saori Nakano, Yuriko Sakamaki, Hayashi Yamamoto, Noboru Mizushima
Journal of Cell Biology 217 ( 8 ) 2633 - 2645 2018.8
Norito Tamura, Taki Nishimura, Yuriko Sakamaki, Ikuko Koyama-Honda, Hayashi Yamamoto, Noboru Mizushima
FEBS Letters 591 ( 23 ) 3819 - 3830 2017.12
Masaaki Uematsu, Taki Nishimura, Yuriko Sakamaki, Hayashi Yamamoto, Noboru Mizushima
Autophagy 13 ( 8 ) 1452 - 1464 2017.8
Autophagosome formation is initiated at phosphatidylinositol synthase‐enriched ER subdomains Reviewed
Taki Nishimura, Norito Tamura, Nozomu Kono, Yuta Shimanaka, Hiroyuki Arai, Hayashi Yamamoto, Noboru Mizushima
The EMBO Journal 36 ( 12 ) 1719 - 1735 2017.6
The intrinsically disordered protein Atg13 mediates supramolecular assembly of autophagy initiation complexes Reviewed
Hayashi Yamamoto (co-first author), Yuko Fujioka, Sho W. Suzuki, Daisuke Noshiro, Hironori Suzuki, Chika Kondo-Kakuta, Yayoi Kimura, Hisashi Hirano, Toshio Ando, Nobuo N. Noda, Yoshinori Ohsumi
Developmental Cell 38 ( 1 ) 86 - 99 2016.7
Hayashi Yamamoto (co-corresponding author)*, Takayuki Shima, Masaya Yamaguchi, Yuh Mochizuki, Hisashi Hoshida, Soichiro Kakuta, Chika Kondo-Kakuta, Nobuo N. Noda, Fuyuhiko Inagaki, Takehiko Itoh, Rinji Akada, Yoshinori Ohsumi*
Journal of Biological Chemistry 290 ( 49 ) 29506 - 29518 2015.12
Atg13 HORMA domain recruits Atg9 vesicles during autophagosome formation Reviewed
Sho W. Suzuki, Hayashi Yamamoto (co-corresponding author)*, Yu Oikawa, Chika Kondo-Kakuta, Yayoi Kimura, Hisashi Hirano, Yoshinori Ohsumi*
Proceedings of the National Academy of Sciences 112 ( 11 ) 3350 - 3355 2015.3
Structural basis of starvation-induced assembly of the autophagy initiation complex Reviewed
Yuko Fujioka, Sho W Suzuki, Hayashi Yamamoto (co-first author), Chika Kondo-Kakuta, Yayoi Kimura, Hisashi Hirano, Rinji Akada, Fuyuhiko Inagaki, Yoshinori Ohsumi, Nobuo N Noda
Nature Structural and Molecular Biology 21 ( 6 ) 513 - 521 2014.6
Different phosphatidylinositol 3-phosphate asymmetries in yeast and mammalian autophagosomes revealed by a new electron microscopy technique
Toyoshi Fujimoto, Hayashi Yamamoto, Yoshinori Ohsumi
Autophagy 2014.5
Yeast and mammalian autophagosomes exhibit distinct phosphatidylinositol 3-phosphate asymmetries Reviewed
Jinglei Cheng, Akikazu Fujita, Hayashi Yamamoto, Tsuyako Tatematsu, Soichiro Kakuta, Keisuke Obara, Yoshinori Ohsumi, Toyoshi Fujimoto
Nature Communications 5 ( 1 ) 2014.5
Kuninori Suzuki, Manami Akioka, Chika Kondo-Kakuta, Hayashi Yamamoto, Yoshinori Ohsumi
Journal of Cell Science 2013.1
Atg9 vesicles recruit vesicle-tethering proteins Trs85 and Ypt1 to the autophagosome formation site Reviewed
Soichiro Kakuta, Hayashi Yamamoto, Lumi Negishi, Chika Kondo-Kakuta, Nobuhiro Hayashi, Yoshinori Ohsumi
Journal of Biological Chemistry 287 ( 53 ) 44261 - 44269 2012.12
Noncanonical recognition and UBL loading of distinct E2s by autophagy-essential Atg7 Reviewed
Masaya Yamaguchi, Kazuaki Matoba, Ryoko Sawada, Yuko Fujioka, Hitoshi Nakatogawa, Hayashi Yamamoto, Yoshihiro Kobashigawa, Hisashi Hoshida, Rinji Akada, Yoshinori Ohsumi, Nobuo N Noda, Fuyuhiko Inagaki
Nature Structural and Molecular Biology 19 ( 12 ) 1250 - 1256 2012.12
Membrane protein Rim21 plays a central role in sensing ambient pH in Saccharomyces cerevisiae Reviewed
Keisuke Obara, Hayashi Yamamoto, Akio Kihara
Journal of Biological Chemistry 287 ( 46 ) 38473 - 38481 2012.11
Structure-based analyses reveal distinct binding sites for Atg2 and phosphoinositides in Atg18 Reviewed
Yasunori Watanabe, Takafumi Kobayashi, Hayashi Yamamoto, Hisashi Hoshida, Rinji Akada, Fuyuhiko Inagaki, Yoshinori Ohsumi, Nobuo N. Noda
Journal of Biological Chemistry 287 ( 38 ) 31681 - 31690 2012.9
Hitoshi Nakatogawa, Shiran Ohbayashi, Machiko Sakoh-Nakatogawa, Soichiro Kakuta, Sho W. Suzuki, Hiromi Kirisako, Chika Kondo-Kakuta, Nobuo N. Noda, Hayashi Yamamoto, Yoshinori Ohsumi
Journal of Biological Chemistry 287 ( 34 ) 28503 - 28507 2012.8
Structural insights into Atg10-mediated formation of the autophagy-essential Atg12-Atg5 conjugate Reviewed
Masaya Yamaguchi, Nobuo N. Noda, Hayashi Yamamoto, Takayuki Shima, Hiroyuki Kumeta, Yoshihiro Kobashigawa, Rinji Akada, Yoshinori Ohsumi, Fuyuhiko Inagaki
Structure 2012.7
Atg9 vesicles are an important membrane source during early steps of autophagosome formation Reviewed
Hayashi Yamamoto, Soichiro Kakuta, Tomonobu M. Watanabe, Akira Kitamura, Takayuki Sekito, Chika Kondo-Kakuta, Rie Ichikawa, Masataka Kinjo, Yoshinori Ohsumi
Journal of Cell Biology 198 ( 2 ) 219 - 233 2012.7
Dual role of the receptor Tom20 in specificity and efficiency of protein import into mitochondria Reviewed
Hayashi Yamamoto (co-first author), Nobuka Itoh, Shin Kawano, Yoh-ichi Yatsukawa, Takaki Momose, Tadashi Makio, Mayumi Matsunaga, Mihoko Yokota, Masatoshi Esaki, Toshihiro Shodai, Daisuke Kohda, Alyson E. Aiken Hobbs, Robert E. Jensen, Toshiya Endo
Proceedings of the National Academy of Sciences 108 ( 1 ) 91 - 96 2011.1
Roles of Tom70 in import of presequence-containing mitochondrial proteins Reviewed
Hayashi Yamamoto, Kenji Fukui, Hisashi Takahashi, Shingo Kitamura, Takuya Shiota, Kayoko Terao, Mayumi Uchida, Masatoshi Esaki, Shuh-ichi Nishikawa, Tohru Yoshihisa, Koji Yamano, Toshiya Endo
Journal of Biological Chemistry 284 ( 46 ) 31635 - 31646 2009.11
Yasushi Tamura, Yoshihiro Harada, Takuya Shiota, Koji Yamano, Kazuaki Watanabe, Mihoko Yokota, Hayashi Yamamoto, Hiromi Sesaki, Toshiya Endo
Journal of Cell Biology 184 ( 1 ) 129 - 141 2009.1
Yasushi Tamura, Yoshihiro Harada, Koji Yamano, Kazuaki Watanabe, Daigo Ishikawa, Chié Ohshima, Shuh-ichi Nishikawa, Hayashi Yamamoto, Toshiya Endo
Journal of Cell Biology 174 ( 5 ) 631 - 637 2006.8
Hayashi Yamamoto, Takaki Momose, Yoh-ichi Yatsukawa, Chié Ohshima, Daigo Ishikawa, Takehiro Sato, Yasushi Tamura, Yukimasa Ohwa, Toshiya Endo
FEBS Letters 579 ( 2 ) 507 - 511 2005.1
Identification of Tim40 that mediates protein sorting to the mitochondrial intermembrane space Reviewed
Mari Naoe, Yukimasa Ohwa, Daigo Ishikawa, Chie Ohshima, Shuh-ichi Nishikawa, Hayashi Yamamoto, Toshiya Endo
Journal of Biological Chemistry 279 ( 46 ) 47815 - 47821 2004.11
Masatoshi Esaki, Hidaka Shimizu, Tomoko Ono, Hayashi Yamamoto, Takashi Kanamori, Shuh-ichi Nishikawa, Toshiya Endo
Journal of Biological Chemistry 2004.10
Two novel proteins in the mitochondrial outer membrane mediate β-barrel protein assembly Reviewed
Daigo Ishikawa, Hayashi Yamamoto, Yasushi Tamura, Kaori Moritoh, Toshiya Endo
Journal of Cell Biology 166 ( 5 ) 621 - 627 2004.8
Toshiya Endo, Hayashi Yamamoto, Masatoshi Esaki
Journal of Cell Science 116 ( 16 ) 3259 - 3267 2003.8
Tim50 is a subunit of the TIM23 complex that links protein translocation across the outer and inner mitochondrial membranes Reviewed
Hayashi Yamamoto, Masatoshi Esaki, Takashi Kanamori, Yasushi Tamura, Shuh-ichi Nishikawa, Toshiya Endo
Cell 111 ( 4 ) 519 - 528 2002.11
フェリチン液滴オートファジーの分子メカニズムの総合的理解
Grant number:24K01980 2024.4 - 2028.3
日本学術振興会 科学研究費助成事業 基盤研究(B)
山本 林, 境 祐二
Grant amount:\18460000 ( Direct Cost: \14200000 、 Indirect Cost:\4260000 )
クロススケール細胞内分子構造動態解析が解明する選択的オートファジー始動メカニズム
Grant number:21H05256 2021.9 - 2026.3
日本学術振興会 科学研究費助成事業 学術変革領域研究(A)
山本 林
Grant amount:\70590000 ( Direct Cost: \54300000 、 Indirect Cost:\16290000 )
(1) オートファゴソーム膜変形を促す因子のIn-cell、On-membrane解析
鉄貯蔵タンパク質であるフェリチンがNCOA4とともに液滴形成し、マクロオートファジーとミクロオートファジーの共通基質になることを明らかにした。フェリチン-NCOA4液滴が、NCOA4の二量体形成、NCOA4-FTH1相互作用、フェリチン24量体形成によって形成されることを見出した(bioRxiv掲載、論文投稿中)。フェリチン液滴が膜と相互作用する際の各因子の詳細局在をin-cellで解析するため、CRISPR法による各種ノックイン細胞を作成し、機能解析を行っている。
(2) 2つのオートファジーでの「仕分け」と選択的オートファジー始動メカニズムの解析
TAX1BP1-NCOA4相互作用により、フェリチン液滴がマクロオートファジーとミクロオートファジーの両経路で認識されることを明らかにした。STX17TM誘導性発現細胞およびRAB5Q79L誘導性発現細胞を用いて、2つのオートファジーへの仕分け・分岐後に蛍光顕微鏡観察を行い、それぞれの経路に必要な因子の簡易スクリーニングを行い、仕分けに関わる因子を同定した。また、TAX1BP1の機能解析を行い、ATG9小胞のリクルートに関わるTAX1BP1相互作用因子を同定した。
(3) 新規蛍光プローブを利用した液滴オートファジー定量法とスクリーニング系の確立
領域内共同研究で開発されたpH応答性蛍光プローブをHaloTagで導入し、選択的オートファジーおよび液滴オートファジーの新規スクリーニング系を立ち上げた。また、HaloTagを利用した新規オートファジー活性定量法を確立した(bioRxiv掲載、論文投稿中)。他に領域内共同研究で、新規手法によるマイトファジー誘導実験を進めている。
Cross-scale biology
Grant number:21H05247 2021.9 - 2026.3
Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research Grant-in-Aid for Transformative Research Areas (A)
Grant amount:\96980000 ( Direct Cost: \74600000 、 Indirect Cost:\22380000 )
Molecular mechanisms underlying the higher-order assembly of the ULK1 complex that senses autophagy-inducing signals
Grant number:17H03670 2017.4 - 2020.3
Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (B)
Yamamoto Hayashi
Grant amount:\17550000 ( Direct Cost: \13500000 、 Indirect Cost:\4050000 )
Upon induction of autophagy, a double membrane-bound autophagosome is generated and fuses with lysosomes to degrade its contents. However, it remains unclear how the ULK1 complex receives the autophagy-inducing signals from the mTORC1 complex. In this study, we found that the intrinsically disordered region (IDR) of ULK1 directly interacts with the mTORC1 complex. In yeast, the TORC1-interacting region is the IDR of Atg13. Thus, our findings indicate that the signal recognition system is shifted from Atg13 to ULK1 during evolution. We also identified the regions of ULK1, ATG13, and FIP200 involved in the formation of the ULK1 complex and found that the ULK1 complex further assembles with each other to form liquid droplet-like structures in vivo. We also found that ATG9 vesicles are recruited via selective autophagy substrates in addition to the ATG13-dependent pathway found in yeast. We show that mammals have acquired a selective autophagy substrate-dependent pathway during evolution.
Screening of autophagosomal outer membrane proteins required for membrane fusion
Grant number:16K14720 2016.4 - 2018.3
Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research Grant-in-Aid for Challenging Exploratory Research
Yamamoto Hayashi, MIZUSHIMA Noboru, UEMATSU Masaaki
Grant amount:\3770000 ( Direct Cost: \2900000 、 Indirect Cost:\870000 )
Autophagy is a fundamental degradation system conserved in eukaryotes. Upon induction of autophagy, a double-membrane structure, called an autophagosome, is generated and fuses with lysosomes to degrade its contents. Although many ATG proteins have been identified, it remains unclear how autophagosome-lysosome fusion is regulated. In this study, we tried to develop a biochemical method to purify autophagosomes and to identify autophagosomal outer membrane proteins involved in the membrane fusion. For this purpose, we prepared GFP-STX17DN cells to accumulate autophagosomes, harvested an autophagosome-enriched fraction by OptiPrep flotation, and purified autophagosomes using 3xFLAG-LC3. Finally, outer membrane proteins were labeled by a membrane-impermeable biotinylation reagent. By mass spectrometry of the biotinylated proteins, we obtained several candidates of outer membrane proteins. We prepared KO cells (CRISPR) or KD cells (siRNA), however, significant phenotypes were not observed.
Cell biological studies on membrane lipid distribution and dynamics
Grant number:15H02500 2015.4 - 2018.3
Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (A)
Fujimoto Toyoshi, YAMAMOTO HAYASHI, TAGUCHI TOMOHIKO, TAKATORI SHO
Grant amount:\46540000 ( Direct Cost: \35800000 、 Indirect Cost:\10740000 )
Electron microscopic methods to label phosphatidylinositol 3,5-bisphosphate, phosphatidylinositol 3,4-bisphosphate, and phosphatidylserine by quick-freezing and freeze-fracture replica labeling were established and distribution of respective phospholipids were defined at the nanometer scale. Involvement of PML-II in formation of nuclear lipid droplets was found and close relationship between nuclear lipid droplets and PML nuclear body as well as nucleoplasmic reticulum, which is an extension of the nuclear envelope, was shown. Microautophagy of lipid droplets that occurs in budding yeast at stationary phase and in acute nitrogen starvation was shown to proceed in a raft-like membrane domain of the vacuole membrane and Niemann-Pick type C proteins were found to play a critical role in transportation of sterol to generate the membrane domain.
オートファジータンパク質群の動的相互作用と分子集合形態の解析
Grant number:26111508 2014.4 - 2016.3
日本学術振興会 科学研究費助成事業 新学術領域研究(研究領域提案型)
山本 林
Grant amount:\10140000 ( Direct Cost: \7800000 、 Indirect Cost:\2340000 )
オートファゴソーム形成の初期過程では複数のAtgタンパク質からなる高次会合体が形成される。本研究では、Atg高次会合体の形成過程における「Atgタンパク質群の相互作用ネットワーク」について解析を行い、以下の知見を得た。
前年度に行ったMITドメインによるAtgタンパク質相互作用のスクリーニングで得られた情報をもとに、オートファゴソーム形成反応の始動複合体であるAtg1複合体(Atg1, Atg13, Atg17, Atg29, Atg31)に焦点を当てて相互作用解析を行い、既知のAtg13-Atg17相互作用(前年度に報告済み)に加えて、別の部位でのAtg13-Atg17相互作用が高次会合体形成に重要であることを見出した。構造解析から、2つのAtg13-Atg17相互作用は空間的に遠く離れた位置にあることが見出され、in vitro解析から、Atg13-Atg17相互作用が分子内ではなく分子間での相互作用であることを明らかにした。これらの結果は、Atg1複合体が2つのAtg13-Atg17分子間相互作用を介して連結していくことを示している。また、これらの相互作用が、Atg1キナーゼの自己リン酸化および自己活性化に必須であり、さらに、下流のAtg9ベシクルの集積にも関与することを見出しており、Atg会合体形成機構の分子基盤を明らかにする重要な知見である(現在論文リバイス中)。
耐熱性酵母Kluyveromyces marxianusのAtgタンパク質を同定し、これらのタンパク質が高い熱安定性を持ち、構造解析やin vitro解析に有用であることを示した(Yamamoto et al., J. Biol. Chem., 290, 29506-29518, 2015)。
Proteomic analyses of autophagy-related structures in yeast
Grant number:24770182 2012.4 - 2014.3
Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research Grant-in-Aid for Young Scientists (B)
YAMAMOTO Hayashi
Grant amount:\4680000 ( Direct Cost: \3600000 、 Indirect Cost:\1080000 )
Autophagy is a conserved degradation process, wherein autophagosomes are generated by cooperative actions of multiple autophagy-related (Atg) proteins. Previous studies using yeast Saccharomyces cerevisiae have provided various insights into the molecular basis of autophagy, however, the most intriguing issues in autophagy, namely, the origin of the autophagosomal membranes, remain to be elucidated. In this study, we succeeded to purify the autophagosomal membranes and the Atg9 vesicles, one of the autophagy-related membranes, and subjected them to proteomic analyses. These analyses showed that both the Atg9 vesicles and the autophagosomal membranes contain the TRAPPIII complex and its downstream factor Ypt1. Furthermore, we found that the Atg9 vesicles become part of the autophagosomal membranes, thereby recruiting the TRAPPIII complex and Ypt1 onto the autophagosomal membranes.
オートファジーによるミトコンドリアの選択的分解〜その生理的意義とは〜
Grant number:06J11817 2006 - 2008
日本学術振興会 科学研究費助成事業 特別研究員奨励費
山本 林
Grant amount:\3400000 ( Direct Cost: \3400000 )
オートファジーに関与する膜タンパク質Atg9の機能解析
Atg9はオートファジーに必須の唯一の膜タンパク質であり、オートファゴソーム膜形成に際して脂質成分の供給を担っていると考えられているが、その実験的な証拠は得られておらず、Atg9の具体的な機能に関しては不明な点が多く残っている。また、Atg9はオートファゴソーム形成の場と考えられるPAS(Pre-Autophagosomal Structure)と、ミトコンドリアをシャトルしていることが報告されており、マイトファジーにおけるミトコンドリア選択性に関与する可能性が考えられる。
私は本研究においてこれまでに、Atg9がautophagy-related kinaseであるAtg1によってリン酸化されることを明らかにしており、Atg9の機能におけるリン酸化の意義とマイトファジーの関係について解析を行っていたが、その過程で、Atg9が完成した(閉じた)オートファゴソーム膜に局在することを新たに見出した。これまでの報告では、Atg9は閉じたオートファゴソーム膜には局在しないとされてきたが、本研究での蛍光顕微鏡観察では、オートファゴソームのcontentsマーカーであるAtg8との共局在が観察され、さらに高倍率・高分解能の観察では、Atg8(contents)の周りにAtg9(membrane protein)がリング状に見える様子が捕らえられた。また、免疫沈降や密度勾配遠心などの生化学的解析を行ったところ、Atg9がオートファゴソーム画分に回収されることが確認され、さらにそのほとんどがオートファゴソームの外膜に局在していることが明らかとなった。前述のAtg9のリン酸化について調べてみたところ、閉じたオートファゴソーム外膜上のAtg9の一部がリン酸化されていることが示され、Atg9のリン酸化とオートファゴソーム膜上への移行に相関が見られた。これらの結果は、Atg9がオートファゴソーム形成に直接関与していることを示すとともに、サイトゾルのAtg9ベシクルからオートファゴソームへと脂質成分が供給されていることを強く示唆する結果と言える。